ICML2011 Unsupervised and Transfer Learning Workshop
نویسندگان
چکیده
We organized a data mining challenge in “unsupervised and transfer learning” (the UTL challenge) followed by a workshop of the same name at the ICML 2011 conference in Bellevue, Washington. This introduction presents the highlights of the outstanding contributions that were made, which are regrouped in this issue of JMLR W&CP. Novel methodologies emerged to capitalize on large volumes of unlabeled data from tasks related (but different) from a target task, including a method to learn data kernels (similarity measures) and new deep architectures for feature learning.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملUnsupervised and Transfer Learning
We organized a data mining challenge in “unsupervised and transfer learning” (the UTL challenge) followed by a workshop of the same name at the ICML 2011 conference in Bellevue, Washington1. This introduction presents the highlights of the outstanding contributions that were made, which are regrouped in this issue of JMLR W&CP. Novel methodologies emerged to capitalize on large volumes of unlab...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملUnsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks
Learning to transfer visual attributes requires supervision dataset. Corresponding images with varying attribute values with the same identity are required for learning the transfer function. This largely limits their applications, because capturing them is often a difficult task. To address the issue, we propose an unsupervised method to learn to transfer visual attribute. The proposed method ...
متن کاملProceedings of the Morpho Challenge 2010 Workshop
In natural language processing many practical tasks, such as speech recognition, information retrieval and machine translation depend on a large vocabulary and statistical language models. For morphologically rich languages, such as Finnish and Turkish, the construction of a vocabulary and language models that have a sufficient coverage is particularly difficult, because of the huge amount of d...
متن کامل